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ANthe bee 1112 than the fcc flloj directions due to the additional strong
multiple intérlayer forces arising from its geometric stucture. A
quantitative analysis based on surface lattice dynamics of the recorded
electron energy loss spectra of Cu and Ni suggests that the surface interlayer
force constant attains the same value as in bulk, and that the two outermost
layers give the dominant contribution to the dipole activity. This resonance
is found to exist throughout the(r¥ direction and makes an avoided crossing
with a resonance derived from a band gap at the f-point. This novel dispersion
behavior should be possible to observe by electron or atom scattering at larger
parrallel wavevector transfers.
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3&: Abstract:

§§ It is shown by surface lattice dynamics that a new class of surface

“ vibrational resonances arises in those frequency regions where there is a

; \ strong depletion in the bulk phonon density of states. The presence of

iﬁ} these pseudo band gaps is due to the higher Fourier components in the

%: phonon dispersion relations introduced by the particular coordination of
ﬁ& atoms in layers parallel to the surface. This phenomenon is illustrated
{ﬁ for the fcc(110) surfaces of Cu and Ni and the bcc(1ill) surface of Fe. The
o pseudo band gap is found to be more pronounced for the longitudinal phonons
Q; propagating in the bcc [111] than the fcc [110] directions due to the

Es additional strong multiple interlayer forces arising from its geometric

ﬁé structure. A quantitative analysis based on surface lattice dynamics of
§i the recorded electron energy loss spectra of Cu and Ni suggests that the
%g surface interlayer force constant attains the same value as in bulk, and
:ﬂd that the two outermost layers give the dominant contribution to the dipole
ifé activity. This resonance is found to exist throughout the TX direction and __
;': makes an avoided crossing with a resonance derived from a band gap at the
_u X-point. This novel dispersion behavior should be possible to observe by
§§: electron or atom scattering at larger parallel wavevector transfers.
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1. Introduction

The vibrational properties of clean metal surfaces have recently
attracted a lot of attention both from an experimental and a theoretical
point of view. These studies have been made possible by new surface
sensitive vibrational spectroscopies such as inelastic He scattering and
electron energy loss spectroscopy (EELS). These techniques probe
vibrations with such high frequencies that the surface lattice dynamics
cannot be described fully within the continuum elasticity theory. In this
frequency regime the atoms vibrate with large relative displacements such
that the surface geometric structure and the surface interatomic forces are
expected to play a decisive role. Recent measurements on Ni{100) by EELS!
and Ag(111) by inelastic He scattering? demonstr&ted that such information
can be extracted from the surface vibrational spectra. An analysis of the
EELS data recorded in the impact scattering regime has shown that the data
can only be accounted for by a 20% increase of the surface force constant
from the bulk value and a 3% contraction of the surface interlayer
spacing.® On Ag(111) the presence of an anomalous peak in the measured
spectra was shown in an analysis based ‘'on surface lattice dynamics to be a
signature of a 50% reduction in the radial surface force constant from the

bulk value.>

Their analysis attributed this peak to be a surface resonance
mode. >

The possibility to observe dipole active surface vibrational modes on
clean metal surfaces was recently demonstrated for the {(100) surfaces of Cu

and Ni by EELS.® In a recent letter we reported the observation of dipole

active resonance modes on the (110) surfaces of Cu and Ni.?” These modes

were shown from surface lattice dynamics calculations to be a new kind of




:;‘::;' resonance arising from a pseudo band gap in the density of states for
longitudinal phonons propagating normal to the surface. This gap defines a

region where the bulk phonon density of states is strongly depleted and has

i)
E‘Ség: a simple structural explanation in terms of the coordination of the atoms
R in the layers normal to the (110) direction of fcc crystals. No such gaps
;3':2 and resonances exist on fcc (100) or (111) surfaces.
;::'%EE This paper shows in detail for a few different cases how a surface
i .
vibrational resonance arises in situations with pseudo band gaps in the
?E bulk phonon density of states. The surface is observed to split off a mode
';,‘i from the region of high density of bulk phonon states into the
:';':' pseudo band gap region where the strong depletion of the density of states |
::::::‘ causes the mode to become a resonance. An argument is also g‘i ven for
::‘:3::' . explaining why the divergent van Hove singularities which are present in
A the bulk density of states disappear for a projection on the surface
;. layers. These divergences disappear because an incident phonon at those
‘_ frequencies interfere destructively with the phonons scattered from the
’ surface. On the [110] surfaces of fcc Ni and Cu crystals the pseudo band
:E“ gap is shown to exist along the I'X direction in the surface Bril ouin zone
ég (SBZ). The corresponding surface vibrational resonance makes an avoided
Bl crossing with a resonance derived from a gap mode at the X-point in the
SBZ. This kind of phenomenon has, to the best of our knowledge, not yet
’C_ been discussed in the literature. Previous lattice dynamical calculations ==
j'* for these surfaces! have shown that a surface vibrational resonance can
g,f, develop when the surface splits off a mode from one bulk subhand which g
;:: becomes resonant with an overlapping second bulk subband. [n contrast the —
" resonances discussed in this paper are seen to result from a single bulk ~—
E?:g phonon band and possess a nonvanishing frequency at [, the center of the )L
::E: t '”“Spcciél’or
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SBZ.
An extreme case of a pseudo band gap is found in the dispersion of
Tongitudinal phonons in the [111] direction of body centered cubic

crystals. In this case there exists two rather narrow surface resonances

as illustrated for Fe{11ll). This analysis suggests in general that surface
vibrational resonances should be observable on a variety of surfaces at
points in the SBZ where a bulk phonon dispersion relation has a pseudo band
gap.

A detailed quantitative comparison of the measured spectra with the
calculated EEL spectra shows that the loss peak derived from the resonance
is reproduced with a value for the surface force constant within + 15% from
its bulk value. This finding is rather remarkable in light of the large
oscillatory relaxations of the surface layers observed by low energy
electron diffraction (LEED) for these surfaces.® The spectra also give
information about the dipole activity of the surface layers. The shape of
the loss spectrum is well reproduced by only the two outermost surface
layers giving the dominant contribution to the dipole activity. The dipole
strength is found to be of the same order of magnitude as measured for the
(100) surfaces.®

The vibrational structure of the surface appear in the measured
spectra through a specific projection of the surface vibrational density of
states. While the relevant projection probed in inelastic He scattering is
essentially given by the displacements of the outermost surface atoms

normal to the surface,9

the relative rigid displacements of the surface
layers is the relevant projection in inelastic dipole scattering.® Such
vibrational density of states have been evaluated here from surface lattice

dynamics for a semi-infinite substrate using simple force constant models.
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The force constant models have been extracted from Born von Karman

analysis of inelastic neutron scattering data with particular emphasis on

k’. the high frequency vibrations. The bulk phonon dispersions of Cu and Ni
" / v:
o are well described by a single nearest neighboring force constant.!®,!!

The dispersion of the longitudinal phonons in the [111] direction of Fe is

?:éy more complex and requires at least 3 parameters.'? The surface interlayer
iﬂb’ force constants have been chosen to have the same values as the bulk

ey layers. This choice should be viewed as a reference model with no more

2%} justification than that it describes the large effect of the loss of

§N§ coordination of atoms at the surface.

zﬂf! The surface vibrational density of states has been calculated using a
’hli Green function technique proposed by Lee and Joannopoulos.13 This

}%%’ technique is based on the transfer matrix and its application to surface

g lattice dynamics is described in an appendix. Previous lattice dynamics
§-“§ calculations treating (110) surfaces of fcc crystals have been based on
;;Q; finite siabs,l“ where the surface resonance structure discussed here was
Lﬁh not identified. A reinvestigation of these surfaces using the finite slab
g%é method!® shows that this method is cababie of identifying these resonances
"é and is a convenient method for comparison to electron energy loss spectra
t?%* where an instrumental energy broadening factor is required. However, the
Q'Q transfer matrix method for the semi-infinite crystal allows an exact deter-
&F? mination of the spectral line shapes and is a more practical method for

S! identifying very narrow resonances in the surface phonon density of states.
?;t: This paper is organized as follows. In Section 2 the experimental
?:g; arrangement is described. A theoretical discussion is made in Section 3 to
2 explain the origin of the pseudo band gaps and surface resonances.

§§f¢ Detailed comparison with experiments is given in Section 4, followed by a
fd;.o |
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discussion on the dispersion of the resonances in Section 5. The extension
to bcc(111) surface is presented in Section 6. The paper is summarized in
Section 7. The application of the transfer matrix method for calculating

surface vibrational density of states is presented in the Appendix.

2. Experimental Details

The experiments were performed in a multitechnique ultrahigh vacuum
system which is evacuated by turbomolecular, ion, and titanium sublimation
pumps with a base pressure of 4x10-!! Torr.!® The electron spectrometer is
based on a double pass 127° cylindrical electrostatic deflector for the
monochromator and analyzer. The scattering geometry is fixed with a total
scattering angle of 120°. The angular acceptance of the analyzer is 1.8°
at full-width-half-maximum (FWHM). The scattering plane containing the
incident and scattered electrons is defined by the surface normal and the
[110] crystallographic direction. The spectra were recorded in the |
specular direction at a temperature of 300 K. Impact energies of 3.2 and
4.3 eV were used for Cu and Ni respectively.

The samples, which were approximétély 1 cm diam and 1 mm thick disks,
were cleaned by neon ion bombardment (500 eV) and annealing to 750 and 1050
K for Cu and Ni respectively. The samples were spotwelded to a manipulator
with a pair of 0.5 mm Ta wires for the Ni sample and with 0.5 mm Pt wires
for the Cu sample. The clean surfaces displayed sharp 1x1 LEED patterns
without any sign of typical impurity vibrations, such as 0, C, or S, in the
electron energy loss spectra. Similar procedure was used in preparing the
Fe sample except that it was sputtered with 1 kev ions and annealed to 850
K. The most difficult contaminant to remove on the Fe surface was found to

be oxygen. The Fe crystal was also mounted by two 0.5 mm Ta wires.

ey e S Ny NS Y e N o e R e
Y - . ', * £ . e A LY




-7 -

The vibrational spectra of the clean Cu and Ni(110) surfaces are shown

in Fig. 1. The instrumental resolution is 4 meV FWHM. On both surfaces
sharp loss features are observed within the bulk phonon bands at 20 and 24
meV for Cu and Ni respectively. Off-specular measurements show these

17 Energy gain

losses to be excited by the dipole scattering mechanism.
peaks are also observed with an intensity ratio to the energy loss peaks
determined by the Bose-Einstein distribution factor at 300 K. An important
feature of these losses is that the ratio of their energies scales as the
ratio of the maximum bulk phonon frequency which is 29.7 and 36.7 meV for
cu'® and Nil! respectively. This fact suggests that these losses are
derived from longitudinal phonons propagating normal to the surface. A
surface lattice dynamics analysis presented below shows in féct that the
observed spectral features are due to a vibrational resonance, localized on
the outer surface layers, which results from a split off state in a pseudo

band gap in the density of states for longitudinal phonons propagating

along the [110] direction.

3. Pseudo band gaps and resonances: fcc(110) surfaces

The notion of a pseudo band gap is illustrated by the dispersion of
tongitudinal bulk phonons in the [110] direction. A detailed analysis of
the displacement fields for phonons scattered from the surface shows how a
surface vibrational resonance can develop in this situation and why the
divergent van Hove singularities present in the bulk phonon density of
states disappear on the surface projection. The development of a resanance
on the (110) surface is contrasted with the (100) and (111) surfaces where
no such resonances appear.

For the (110) surface of fcc metals only rigid motions of the layers

of atoms normal to the surface can be dipole active. Such a motion of the

T b S Ry e e e e
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bulk layers corresponds to longitudinal bulk phonons propagating in the
[110] direction. It is known since the early studies by inelastic neutron
scattering that the full bulk phonon dispersions for Cu and Ni can be well
decribed by a Born-von Karman model of lattice dynamics based on central
nearest neighboring force constants.!®s!! In this model the eigenvalue
problem for the longitudinal bulk phonons propagating in the [110]
direction is given by,

wlw = Sl - wLay - WLy - W - W), (1)

and is in the [100] and [111] directions given by

wlw = ?%(M c ey - Wo1)s (2)

where wp is the displacement of an atom in the Lth layer in a direction
normal to the layer, « the frequency, a the central nearest neighboring
force constant, and M the mass of an atom.

From the transiational symmetry of the bulk layers the solutions to
Egs. (1) and (2) are simple plane waves w_ = eimtl with energies w(z)

satisfying the dispersion relation for the [110] direction,

m2
w?(g) = ;_[sin’-(%E) + sin®(nz)], (3)

and for the [100] and {111] directions,

w?(g) = wd sinz(-;i), (4)

where w% = 8a/M. The resulting phonon dispersion from this simple force

constant model for the lattice dynamics agrees fairly well with data from

inelastic neutron scattering for all the major crystallographic directions

as shown in Fig. 2 when wy is adjusted so that w(z=1) is equal to the

measured value in the [110] direction, i.e. w(g=1) = wg//2, wp = 29.7 and
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36.7 meV for Cu and Ni, respectively. The fit is particularly good in the
high energy region and the largest discrepancies are typicaily found in,
for this analysis, the less interesting low energy region.

A characteristic feature of the dispersion in the [110] direction is
its non-monotonic behavior with a maximum at ¢=g5, well within the
Brillouin zone. This behavior can be understood simply from the
coordination of atoms in this direction shown in Fig. 3. In this case an
atom has nearest neighbors not only in the nearest layer but also in the
next nearest layer. The next nearest neighboring atom lies in the [110]
direction and causes the next nearest interlayer force constant to be as
strong as the nearest interlayer force constant in Eq. (1). This causes
for instance the restoring force for the displacement fields at ¢ = 0.5 to
be stronger than at ¢ = 1.0. In the other two crystallographic directions
an atom has only nearest neighboring atoms in the nearest neighboring layer
and this causes the dispersion to be monotonic with g as evidenced by Eqs.
(2) and (4).

In surface vibrational spectroscopy one probes the vibrational density
of states in the surface region. Befdre presenting results for the surface
density of states we will consider first the density of states for a bulk
layer. The phonon density of state g(w) for a bulk layer is simply
determined by

glw) = J[&- (5)
i'dg z=gj

where the sum is over all positive g; satisfying w = w(zj). From the
phonon dispersion relations given by Eqs. (3) and (4) g(w) can be evaluated
straightforwardly and is presented for Ni in Fig. 4 (upper panel). In the

Tow energy limit w = cg¢n/d and g(w) goes to a constant, g(w) = d/Cgm,

where Cs is the longitudinal sound velocity and d the interlayer spacing.
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The stationary points in the dispersion relation defined by gﬂ = 0 give
4

rise to divergent van Hove singularities in g(w).!® In one-dimensional
problems, as in the case considered here, the divergences are in most cases
power singularities with an exponent -1/2. This kind of singular behavior
is readily shown from the fact that it is possible to make a Taylor
expansion w(zg) = we + y(c-;c)z/z around an isolated stationary point

¢ = gc and Eq. (5) gives directly that

glw) =

|w-wc|'1/2, Zric. (6)

AT

However, in some exceptional cases, which are not encountered here, y = 0
and the next leading term in the Taylor expansion gives rise to another
value for the exponent. For metals it is also possible to have
non-analytic behavior, Kohn anomalies, from the long-range interactions
introduced by the sharp Fermi surface. These singularities are not
discernible for Cu and Ni. The most important point to be made here about
g{w) is the fact that the [110] dispersion relation has a relatively large
density of states in a rather narrow region in w, 22 < fiw < 33 meV,
compared to the low energy region 0 f_ﬁw < 22 meV. This latter region will
for that reason be called a pseudo band gap. No such region can be defined
for the other two directions [100] and [111].

In order to evaluate g(w) for a surface layer one needs a model for
the effects of the surface on the force constants. An obvious effect of
forming’a surface is the corresponding loss of coordination of the
surface atoms. Here we will only account for that effect on the interlayer

force constant. The resulting equations describing the surface layers in
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ahgt the [110] direction are given by,

:":’. a
S w2w1 = ﬁ(ZWI - Wy - W3)

) 'I' (7)
e
:,.’:;: u)ZWZ = %(3W2 - W - W3 - Wk),

.‘.." and for the outermost surface layers in the [100], [111] direction

Y

2o 200 = 2w - W)

:t:: wwy _M(wx wa) (8)
hak

.*‘ The presence of the surface breaks the translational symmetry and the
!:‘.a solutions to Eqs. (1) and (7) can no longer be written as a single plane
\ v +

""-g wave. Rather a wave e-imtL incident on the surface will be reflected and
:“::. +i1TEL . Ind

&E.k can couple to another wave e with the same energy w(z) = w(z). This
. B

o kind of argument suggests the following ansatz for the scattered wave in
N
& the [110] direction,

"o

Pl ¥ . . -
‘ This form for the ansatz is justified in the Appendix. Due to the

Bty

“‘-'Q, non-monotonic behavior of the dispersion some care is needed to get the
R)

:.;": right boundary conditions. The reduced wavevector ¢ has to be choosen from
,s' the ranges -1 < ¢ < -gp and 0 < ¢ < ¢y where the maximum in the phonon

R )

AR

’a dispersion occurs at ¢ ¢y. In these ranges the group velocity is

LAY positive, dw/dz > 0, so that e-imiL and ei"il are incoming and outgoing
&

O . +ingl .

1_.: waves, respectively. The other reflected wave e is propagating for
i

2-:2 w/wg > 1//2 and similarly has to be choosen from the ranges where the group
Ak -

velocity is positive, do/dc>0. For smaller energies w/wg<1/v2, z is
'L'f::‘ intlL -
*}:\ complex and e 5 is an evanscent wave and the sign of Img has to be
s
"'Z chosen so that it is a decaying wave.
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3; The two reflection coefficients R(z) and R(z) are now determined from
42y
i the two equations of motion for the surface layers, Eq. (7). The two
RN -
;fﬁ equations for R(z) and R(Z) are given by,
Wt < ~ .-
;::;:, d; (2)R(z) + d; (2)R(g) = -di(-c) i=1,2 (10)
b0
where
di(z) = (v¥(g)-1/8) + %(e”‘ + e12m%)
and
ey da(c) = (+2(2)-3/8) + X(e™1C v ™6 4 1210,
NN
b (< ¥
3%3% Here v is the reduced energy v = w/wg. The surface vibrational density of
2 e
$r states defined as,
PR W™
o 1
-§?§ glw) = [yde|w1|26(w-alz)) (11)
W
{ﬁxi can now be evaluated from Eq. (9). It turns out, however, that it is more
I“
elegant and practical to evaluate g{w) by the transfer matrix method
A
3)
§§ 1 described in detail in the appendix. The resulting g(w) calculated by the
)
gﬁ:j transfer matrix method for the [110] direction is depicted in Fig. 4 (lower
;) ] panel).
Lo
o o, R
21:; A noteworthy feature of g(w) is that the divergent van Hove
Y35
ghﬁﬂ singularities have disappeared in the projection on the outermost surface
QAN
A layer. This can be shown rather easily from Eqs. (9) and (10) to be due to
WIS
b the fact that one gets destructive interference between incident and
Aol
&t*. reflected waves resulting in w =0 at the stationary points. For instance
’h’* at ¢ = i the ansatz degenerates to,
é::;:: - ~ingml +ingpl
e N = .
e W (1 +R(g))e + Rig e (12)
i
'0"‘0
-
ety
P
(<37 :
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) Instead of having two inhomogeneous equations for R(z) and R(z) from

RS
éﬁ‘ Eq. (10) we have now two homogeneous equations for 1 + ﬁ(;m) and
fl’ R(zm). These two equations will in general have a trivial solution
E%? except in those accidental cases where the determinant is identically
%.ﬁ zero. Thus the contribution to g(w) from g=gp is g(w)=|w1(;)'2/|du/d;[.
““; From Eq. (10) it is evident that w;(z) is analytic around z=zy,, and
ztﬁs wi{z) = A(z-gq) since wylgy) = 0. Similarly for w(z), w(g) = wp +
Efﬁz v(z-cp)?/2, and
2

' g(w) = 'IIEI:/Z (wm -w)l/2 ¢ Ze (13)
:si* Thus the divergent van Hove singularity -(w-wg)-1/2 at a bulk layer
;;g turns into a bounded van Hove singularity -(w-wg)'/? on a surface
{';E layer. This argyment indicates also that the divergent van Hove
$£? singularity should not exist in g(w) for a projection on any layer for the

semi-infinite substrate. A closer analysis reveals, however, that the bulk
EE%% density of states are recovered in the limit L+=. For instance, for a
%;;ﬁ layer far inside, L » 1, IwL|2 = 4sin?[n(g-gy)L] when g+gy. Thus
;2# g{w) will rise rapidly when going away from wy and have a large
Est; maximum 8L/|Y| at c-ﬁm = 1/2L, arbitrarily close to wp. This argument
fﬁ? for the disappearance of the divergent van Hove singularities in a
QZT projection of g(w) on a surface layer can be shown to apply to more general
:§§ situations. For instance, it is not necessary that surface force constants
iiié are the same as in the bulk region.
;hi Most importantly, g(w) shows a sharp narrow feature around 23 meV as
fSéz seen in Fig. 4 {lower panel}. This feature is now shown to be a surface
.%g vibrational resonance. 1In a situation when there is an absolute band gap
f ? it is well known that the surface can introduce a localized state split off
_5 o
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@%ﬁ from the band. In this case there is no absolute band gap rather a pseudo
u
X
4§E band gap. The surface can possibly split off a state from the band which
Ly turns into a resonance by overlapping with the low density of bulk states
?
W
mg, in the pseudo band gap. This expectation is confirmed from an analysis of
B
Kb the reflection coefficient for w/wy < 1//2, ¢ = 1 + i« where

1
N coshnx = 74.[1+/§§-32(m/m0)2] and the complex part gives rise to an
%
ikz evanescent wave (-1)L e-xL. The corresponding reflection coefficient

R(z) is found to have a simple pole for complex v at

o . .
gﬁ; vpole = 0.663 + 10.047 (for Ni, Hupgle = (24.3 + i1.73)meV.) The
@E; existence of such a pole with an imaginary part wy relatively close to
t"u
£ » the real axis justifies calling this rather sharp peak a surface
:g% vibrational resonance. Note that the peak is quite asymmetrical due to
.
E}: interference with bulk states in the depicted projection, a feature which
R
1Y

is typical for Fano-resonances,!?

“gi{ For the [100] and [111] directions the ansatz for the solution to

Ry
: t Eqs. (2) and (8) has a more simple form

L .
¥ w o=e "k p(petmit (14)
;:.:' L

cr
%;4 for 0<z<l. This ansatz inserted into Eq. (8) for the surface layer gives a
| ".n: :
g:} simple form for the reflection coefficient R(z) = e1"%, As a function of
§:§ v this reflection coefficient, R(v) = 1-202421 /v (when 0<z<l), has no
[ :E poles associated with any resonances. The phonon density of states g{w)
lﬁi projected on a surface layer can now be evaluated directly from Eq. (11)
37 and is given by,
tn"‘" .

% glw) = 2 A (22 (15)
‘G n wo
‘B
3;; This density of states shows accordingly no surface vibrational resonances
Bl
i
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k: : as depicted in the lower panel of Fig. 4.
AN
i
'i‘!‘lgn
) 4. Comparison with experiment
‘."
;{ it An attractive feature of EELS is the possibility to analyze
18
'; n quantitatively measured dipole active losses.?? The dipole loss function
N
S for longitudinal bulk phonons is calculated for Ni and compared with the
AN
1(-3 measured spectrum. The sensitivity of the calculated spectra to changes in
S
§~,2 the surface force constant and the distribution of the dipole activity
Nl
among the surface layers are also investigated.
|";‘!
fﬂyi In a recent letter it was shown both experimentally and theoretically
‘.
) tﬂ that the displacements of the outer layers of metal atoms can give rise to
X
g a long range dipole field due to incomplete screening by the conduction
L
E;? electrons of the electric field from the displaced ion cores.® The
J‘\J’
'gij strength of the dipole field is described by effective charges et which
. relate the normal component of the dynamic dipole moment u; to the rigid
. _.u
) displacements w; of layer L normal to the surface through,
';T:(.:’ *
-3 W= Ee W, (16)
W z LL
*
;)t Here we use the same model for eL as in Ref. 6,
i
:jb e} = -e3 = e* and e* = 0, L>2. (17)
e L
N
Note that a rigid displacement of the metal atoms normal to the surface
DA
“ﬁs cannot give rise to a dipole moment. i.e. Ee: = 0. The projection of the
.
ﬁﬁ phonon density of states relevant for dipole losses is accordingly given
<.
i by,
-': ( (14 * 25
= 4 - Y e
_,35 glw) = [} ,|EanL<,>| (w-u(3)) (18)
N - : . 2y1/2 . :
j>.~ where n¥ = er/ey ., with et . = (Eet }*/%, is the normalized field of
BN,
%
S48
N
o
%

a,
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effective charges. The spectral function S{w) for the dipole-dipole
correlation function appearing in the energy loss function is related to
gl{w) through,21

S(w) = (1 + n(w))e;ot e glw), (19)

where the mass M of a metal atom appears in the root-mean-square amplitude
fi/2Ms for phonons with energy fiw and n(w) is the Bose-Einstein distribution
factor.

From inelastic dipole scattering theory the inelastic current I,(w) of
electrons collected in the detector around the specular direction after
experiencing an energy loss fw is given with sufficient accuracy by,2°

me?

Il(m)/ltot = m f(EO ,m,u)s(w), (20)

where Igot is the total integrated intensity of the elastic peak in the
energy loss spectrum, m the electron mass, A the area of the surface
primitive cell, and E; the kinetic energy of the electron incident with an
angle a from the surface normal. The function f(E,,w,a) is given by,2°

f(Eg,w,a) = (sinZa - 2cos2a)Y + (sina + 2cos2a)1nX, (21)
where Y = 02/(8% + 02), X =(06% + 03)/6%, o, = fiw/2E, gives the angular
extension of the dipole lobe, and 8, the half-angle of the detector
aperture. The loss function depicted in Fig. 5 is now obtained from Eq.
(20) by calculating the projected phonon density of states defined in Eq.
(18) by the transfer matrix method for the distribution of effective
charges given in Eq. (17). The parameters a, 9;, and E, are determined
from the experimental conditions described in Section 2, and the

experimental resolution was introduced by a 4 meV Gaussian broadening of

glw). The total effective charge e;ot had to be chosen to be 0.034e and
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0.039e for Cu and Ni, respectively, in order to reproduce the measured loss

BZNe

;dk intensities at 300 K. These values are of the same order of magnitude as

f§;: for the value determined previously for the Cu(100) surface.® Because the
:: 3 resonance gives rise to a rather sharp loss peak there has been no

K particular need to have a detailed analysis of the contribution from the
ﬁ;; electron-hole pair excitations to subtract the background.?2?

%ﬁg The calculated position of 24.5 meV and the peak width of 6 meV for
o the surface vibrational resonance shown in Fig. 5 are in good agreement

o£§ with the measured values for Ni. Note that the value for this peak

f:EE position is about 1 meV higher than for the peak position deduced from g(w)
ié; for the projection on the outermost layer. This difference is due to the
g:s fact that the low energy bulk phonons contribute much less to this dipole
%\, active projection, which suppresses the asymmetry of the peak. The peak

’ position is thus closer to the value for the real part of the pole in the
ff% complex w-plane as given in the previous section. For Cu, g{w) is obtained
1\23 in the advocated force constant model simply by scaling the phonon energies
13; with wg(Cu)/wg{Ni) ~ 0.81. This gives an energy of 19.8 meV, in good

ésa agreement with the measured value of 20 meV observed in Fig. 1.

j . There are no reasons to expect that the only effect of the surface is
E?% the loss of coordination of atoms in the surface region as described by

2;j Eq. (7). For instance, both model calculations for the total energy?® and
~3§ low energy electron diffraction (LEED)® measurements have shown that the
 $$ atoms relax oscillatorily in the surface region for many metals. In these
wkg new equilibrium positions for the atoms the force constants can be

5.3 different from the bulk values. Off-specular measurements of the Rayleigh
: surface phonon dispersion on Ni(100) by EELS have suggested that the

ifi interlayer force constant between the first and second layer is about 20%
5.
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larger than the bulk value.!»* On Ag(111) the observation by inelastic

He scattering of a surface vibrational resonance away from the T-point in

;g ; the SBZ could be accounted for by a reduction of about 50% of the radial
Lol
ﬁ.i part of the force constant between atoms in the surface region.?,3
C’.‘O
oot The position of the surface vibrational resonance observed in the
igﬁ energy loss spectrum in Fig. 1 should also contain information about
fr)
RN
ﬁfg surface force constants. The sensitivity of the position of the resonance
"
o to changes in the surface interlayer force constants has been investigated
3$r by calculating a dipole active projection of the phonon density of states
v
: ~ g(w) for different values of the surface interlayer force constants for
Wy
;:} Ni. There are several conceivable ways to modify surface force constants
‘i;' and we have chosen to modify the surface force constant between atoms in
3&?& the outermost layer and their nearest neighboring atoms in the second and
e
W third layer. The modification is described by the following equations of
j‘;; motion for the surface layers,

o
2 Wy = 25020 - Wy - ws)

=
by
e wlwy = aﬁ'é(wz -w) ¢+ aﬁ (2wy - w3 - w,) (22)
)

i
[ ‘;.

N wlwy = 2S5 (W3 - W) + 2 (3wW3 - Wy - W, - Ws).

WY M M

2

The resulting phonon density of states is shown in Fig. 6 (upper panel) for

three different values of ag/a. A 25% increase and decrease of ag

L - LAl X
DA

relative to a shifts the peak upwards by 1.8 meV and downwards by 2.7 meV,

respectively. The experimental resolution is such that it can determine

¥ -
i P ‘.ﬂl‘?l

N the peak position within 1 meV and could accordingly detect changes of ag

;ﬁ within about *15% relative to 3. There are also notable changes in the

N e N
it =~ () i

AT A TN N
ORI

LY % % " V47, %y Y Ry
IR 4 IR W A ST S O e W, o

W \ . \‘..
¥ , y




e L W T T W T T

Y -19 -

width of the resonance when ag is changed. It narrows and widens with
about a factor of 2 when ag is increased and decreased by 25% relative to
a, respectively. The width of the calculated loss peak is close to the
measured width which also supports the range of surface interlayer force
constant ag suggested by the peak position.

Another consideration to be taken into account is how the effective
charges are distributed among the surface layers. In the case of the
Cu(100) surface the results from a jellium model calculation for Cu
suggested the distribution defined in Eq. (17).% The application of the
same model for the Cu(110) surface gives, however, that even the third and
fourth layers have an appreciable effective charge et mainly due to a
smaller interlayer distance in this direction. In Fig. 6 we present
results for g(w) calculated for Ni with two different distributions for
nt = et/e;ot extending to the third and fourth layers and compare with
the result from the distribution defined in Eq. (17). For the other two
distributions the resonance peak is still prominent but the strength of the
states in the upper bulk band region has been appreciably enhanced. The
measured loss spectra for Cu and Ni shown in Fig. 1 do not indicate such a

strong contribution from the bulk states.

Thus our analysis of the loss spectra suggests that there are no

dramatic changes in the surface interlayer force constants from the bulk
values. Further the data favor the model that the effective charges are

dominant for the two outermost surface layers.

5. Dispersion of the resonance along the T-% direction

The dispersion of surface vibrational modes along different directions

in the SBZ has been shown to be feasible to measure for a few metal

e et e e ot
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g

surfaces by inelastic He scatteringz’3 and off-specular EELS.! Therefore

2

WFA A

jt is of interest to know how the resonance disperses away from the

1 T-point. It is found that the resonance exists and is derived from a

?l|f

::f' pseudo band gap even out to the X-point. The resonance makes an avoided
g

§$n crossing with another resonance derived from a surface phonon in a bulk
S5 band gap. Close to the X-point the resonance leaves the bulk subbands and
X

T appears as a surface phonon.

Yy

:.: Along the T-% direction the displacements of the atoms partition into
XN, two classes due to the reflection plane symmetry. The odd modes are

e
,{f{ polarized in the y-direction and are symmetry forbidden to couple with
.l.-.i

f{l displacements of atoms polarized in the x-z piane which form the even

R
5,5 class. In the nearest neighboring central force constant model the motion
5;5 of atoms in the y-direction gives rise to a monotonic dispersion of the
e
jQ!“ corresponding phonons with no pseudo band gaps. Henceforth the y-motion
% will not be considered further. The equations of motion for displacements
W
$§' of atoms in the x-direction and in the z-direction are coupled along the
g

e F-% direction and are for the bulk layers given by,?2>

Y |
;3";3: 2 a '
) wu = =[(4-2cos(7E))up - cos(ng/2) (u -y + upsy)

e "

o

.". + isin(ng/2) (w41 - we-1)]s

N (23)
L
o wlw = 24w - cos(ng/2)(w + W
Na L= Ft™L L+1 L-1) - (w42 + W _2)

e
\l. 3
::. | + isin(ng/2) (upsey - uL-1) 15

e where uLe1kax and wLelkax are displacements in the x- and z-directions,
50
-",_ >
o respectively, of an atom at position R in Layer L, and g = kxa//En is the
Enf reduced wavevector along the [-X direction. At the T-point (¢=0) the
ﬁﬁ? equations of motion for u_ and w_ are decoupled and Eq. (1) is

i)
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v
[{%.)
s§§4 recovered for wy.
Al .
o8 The solutions to Eq. (23) are plane waves u| = ule,cle' ™t and
& i
e W = w(€,2)e' ™l which would result in two branches of the dispersion
P,
;:. relation, one lower w = w| (£,5) and one upper wy = wy(£,z). The
e

) behavior of these two branches at £=0.6 is illustrated in Fig. 7. If one
artifically removes the coupling between up and wi then the dispersion
s for phonons polarized in the x-direction is monotonic and crosses twice the

dispersion for phonons polarized in the z-direction. The latter dispersion

7 is non-monotonic due to the strong coupling to the second nearest layer.
&% The coupling present in Eq. (23) between u_ and w; causes these two
i»? branches to make two avoided crossings with corresponding interchange of
i?‘ character and makes them both non-monotonic with z.
,Ef The influence of the surface on the force constants is modelled in the
o same way as in Section 3 by taking into account only the loss of
g_é coordination of atoms in the surface region. In this complex case we will
2§ not attempt to write out the form of the scattered wave for an incident

izl wave. It is much more tractable to generate results for the surface

'?j vibrational density of states by using the transfer matrix method. This
;E method cannot be applied directly to this system, however, due to the fact
;ff that the dynamical submatrix Dg, between the principal layers is singular
fiﬁ (see Appendix). This matrix Dy, can be regularized, however, by
% introducing a small second layer coupling :-:‘ r{ug4+2 + ug_p) into the
Té- equations of motion for u_ in Eq. (23). The value of r=0.01 is found to
,55 be sufficiently small for an accurate calculation of the phonon density of
:g; states. This value for r is much smaller than the orrors in the nearest
::. neighboring force constant model used to describe Cu and Ni.
ﬁf; The results in Fig. 7 for the phonon density of states gl{w,f) at £=0.6
)
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! j% projected on the x-motion and the z-motion of the outermost layer show

- several prominent features. There is a localized state in the gap at 11.1
"o

.?§I meV, the surface phonon S; in the notation of Ref. 14, being split off from
A 4

.“*% the bulk subbands by the reduction of the restoring forces in the surface
:' )

region. The x-projection of g(w,) shows a narrow peak at 24 meV just

;{{é below the minimum energy of the upper branch which can be interpreted as a
e
ag% state being split off from the upper branch and turning into a resonance

due to overlap with states in the lower branch. Thus the origin of this

<a resonance is the same as for the resonance discussed in the work on Ag(111)
a N

.;k: where an “anomalous" peak was observed in inelastic He scattering.? There
~ o

ﬁi, is, however, another narrow peak in the z-projection of g{w,t) around 19

meV. The non-monotonic behavior of the lower branch suggests the
interpretation that this peak is a resonance derived from the corresponding

pseudo band gap of the lower branch below w| (£,z=1). The upper branch

- -

«;S shows similar non-monotonic behavior with a pseudo band gap in between

:SEZ wy,min and wy(&,5=1) which results in a resonance at 31.1 meV, very

\‘: close to wy(&,5=1). However, its dominant amplitudes are on layers

(Eis further inside the surface.

;g: By calculating the x- and z-projections of g(w,£) on the outermost

i:; layer for several values of £ between 0 and 1 the behavior of the surface
;§§ vibrational modes can be followed along the T-X direction as shown in

régé Fig. 8. At the X-point we have three surface phonons for displacements

;t:: polarized in the x-z plane (i) S; the Rayleigh curface phonon (ii) S5 which

;?’3 exists only close to X and (iii) S; a gap mode. The labelling of the modes

E:éé are taken from the work by Allen, Alldredge and DeWettel“ except for S,

i::, which was not identified in their slab calculations. The mode Sy is

vzgﬁ localized on the second and third layer and is predominantly polarized in
.:-"

B

0
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;;E the z-direction. This mode turns into a resonance MS, inside the lower

;}' bulk subband and lies in the pseudo band gap just below w (£,z=1). At

i.% around £=0.5 - 0.6 the resonance interacts with the MS, resonance and makes
.ij an avoided crossing with a corresponding interchange of character. The

resonance MS; is a continuation of the gap mode S; into the bulk subbands

:& and becomes mainly polarized in the x-direction for 0.6 < £ < 1.0. When ¢
.ié approaches the [-point (£=0) MS; goes over into the resonance discussed in
Wy

previous sections and is mainly polarized in the z- direction. From the

~;: F-point to the avoided crossing the width of MS, remains roughly the same
g
o (about 3.5 meV) and after it interchanges character it sharpens appreciable
'..:_\
ii: to a width less than 0.5 meV. MS,; broadens and gets more localized on the
jif outermost layer away from the T-point and just at the crossing the width is
ié: about 2 meV. After the crossing the width remains about the same and

o sharpens up only just before leaving the bulk subband. Thus at the

©e,

':?i crossing the widths of the resonances overlap, which makes the avoided
oo crossing less well defined.
e
ft: 6. An extreme case: The bcc(111) surface

,:E Non-monotonic phonon dispersion relations are not only found in the

”

Yool
‘:; [110] direction of fcc metals but exists also in the [111] direction of
Lzﬁ; bce metals.?* In general the phonon dispersion relations in cubic crystals
i§2; can be written in terms of a Fourier series in the interlayer force

.f:')

;1‘ constants due to factorization of the dynamical matrix. The higher Fourier
LR
‘gﬁy‘ components result from additional interlayer coupling which leads to

§$§ non-monotonic dispersion relations. In the particular case of Fe(lll) the
-7

e longitudinal phonon dispersion relation shows an additional extreme as a
‘N

- result of more extensive multiple interlayer couplings. This leads to a
N
=
54:‘:
b

2

h Y

- - -
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-
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pseudo band gap that is more pronounced than on the fcc(110) surface. The
multiple extremes are found to give rise to two sharp surface vibrational
resonances.

In the [111] direction of a monoatomic bcc crystal an atom has nearest
neighboring atoms not only in the nearest layer but also in the third
nearest layer (Fig. 9). While second nearest neighboring atoms only appear
in the second nearest layer. It is well known from studies by inelastic
neutron scattering that it is not sufficient to consider only nearest
neighboring force constant models as expected from the fact that the
distances a and /3a/2 to the nearest and second nearest neighboring atoms,
respectively, are rather close (a is the lattice constant).!?

The analysis of the experimental data in terms of a general tensor
force constant model shows dominant interactions to reach second nearest
neighboring atoms. Thus by retaining only up to second nearest neighboring
force constants the eigenvalue problem for longitudinal phonons in the

[111] direction is given by,

Molw = (8a; + 2ap + 485w
- (3ay - 281 )(wp+1 + WL-1)
= (ap + 282)(wpe2 + Wi o2) (24
- (ay + 28)(wpe3 + Wi o3),

where wi is the rigid displacement of a bulk layer L in the [111]
direction, and a;, 8, and ay, 3, are the first and second nearest

neighboring force constants. The values for these force constants are

taken directly from experimental data,'? a;/m = 78.89 (meV)?,
8,/m = 68.38 (mev)? and a,/m = 70.15 (meVv)? and 8, is about 30 times

smaller and is neglected here. The deviations of this tensor force field
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from a central force field where a; = 8, and 8, = 0 are rather small.

Using this force constant model the dispersion of the longitudinal phonons,

.Hi, WL = eiﬂCL, agrees well with the experimental data, as seen in Fig.

?:§§ 10. The most apparent discrepancy is around 7% between the model and the
O data and is found at the second extreme. The existence of two extremes
;iﬁ within the zone boundary is due to the strong coupling to the third layer
;Egl introduced by the presence of a nearest neighboring atom in that layer in
e the [111] direction.

fl} As expected from the non-monotonic dispersion relation in Fig. 10, the
%:? phonon density of states projected on a bulk layer has a pseudo band gap in
“fé the region 0 < fiw < 23 meV, as shown in Fig. 11 (upper panel). This gap is

even more pronounced than in the [110] direction of Cu and Ni due to the

higher longitudinal sound velocity for the Fe[111] direction. There are

now three divergent van Hove singularities from the stationary points in

g;‘; the bulk phonon dispersion. For energies between 23 < fiw < 35 meV there

; g exists three propagating solutions for bulk phonons as can be seen from
Lo Fig. 10. In analogy with the fcc(110) surface, two of these solutions will
:Jb exhibit complex wavevectors for phohon energies within the pseudo band

;ﬁ% gap. These complex solutions give rise to evanescent phonons localized at
;;? the surface which form vibrational resonances. This is illustrated in the
222 surface density of states in Fig. 11 (lower panel).

igé In calculating the surface phonon density of states the effects of the
;E; loss of coordination of atoms on the force constants in the surface region
15?9 are obtained as before by a simple truncation of the interlayer forces.

35}2 The phonon density of states glw) projected on the outermost surface layer
;xi shows no divergent van Hove singularities as expected from the discussion
”¥§$ in Section 3. Two sharp resonances are found in the pseudo band gap at

]
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j{Eﬁ 19.7 and 21.3 meV (Fig. 11, lower panel). The lower lying resonance is
L]
A found to be mainly localized on the first and second layer with a width of
:2;2 about 0.9 meV. This can be compared to the Ni(110) surface where the width
.8
o of the resonance is about 3.5 meV. The higher lying resonance is found to
SO
3 be localized on the second and third layers. Recent electron energy loss
w
'*QQ measurements2* on the Fe(111) surface are found to be in excellent
A
.;; agreement with these results based on surface lattice dynamics. The
" observed energy loss spectrum with a resonant structure at 21 meV and its
i,;' comparison to the dipole projected density of states are shown in Fig. 12.
B
: g
imi 7. Summary
;§?- A new kind of surface vibrational resonance is shown from surface
“F‘:
‘;& lattice dynamics to exist on surfaces having a pseudo band gap in the bulk
15 phonon density of states. The surface splits off a mode from a region of
'4$: high density of states into a pseudo band gap region where the density of
g
K- states is largely depleted. This behavior is illustrated for phonons
1) having a surface component of the wavevector along the I direction in the
ﬁﬁi SBZ of the (110) surfaces of Cu and Ni, and for longitudinal phonons
iy
vZ; propagating normal to the (111) surface of Fe. In these cases, the pseudo
'
. . band gap is a geometric structure effect caused by the particular
",
ﬁ? coordination of the atoms, which leads to higher Fourier components in the
i
X J; bulk phonon dispersion relations.
1A%
;gj At the T-point the resonance is dipole active and has been observed by
ﬁg EELS on the (110) surface of Cu and Ni. From these observations it has
oy
‘Qg been possible to obtain information on the surface interlayer force
- constants. In particular, the positions of the loss peak on Cu and Ni can
ifﬁ; be reproduced with the same values for the interlayer force constants
i;js at the surface as in the bulk. Along the % direction in the SBZ the
A
L Y
I
ljf
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i
s}‘ resonance makes an avoided crossing with a resonance derived from the
1T )
e S,(X) surface phonon. This novel behavior should be possible to observe by
lﬁﬁ inelastic electron or He scattering at large parallel wavevector transfers.
o
.ﬁg Finally, this analysis suggests in general that this type of surface
‘:”.\F:
f“ vibrational resonance should be observable not only by inelastic electron
;:i dipole scattering but by other surface spectroscopies, such as inelastic
i
¢§ He scattering, on a variety of surfaces at points in the SBZ where a bulk
* phonon dispersion is non-monotonic and consequently has a pseudo band gap.
?i; The origin of these effects is directly related to the geometric structure
]
el of the surface.
‘,:2
ol
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0 APPENDIX
i) P"
i In this Appendix it is shown how the transfer matrix method proposed
LAY ,
e by Lee and Joannopoulos'? can be applied to the calculation of surface
o )
e vibrational density of states. The method is illustrated for the surface
(3, ‘Gl

:‘ lattice dynamics problem of longitudinal phonons propagating normal to a
Ve
?‘Q fcc(110) surface. Furthermore, this method justifies the choice of the
vty
o ansatz for the scattered waves in Eqs. (9) and (14).

.50

The first step in this method is to form principal layers, here

L3 M
'xtﬁ labelled by an integer n, n=1,2,..., from the layers of atoms parallel to
i
A the surface such that the dynamical matrix only introduces interactions
[ ..
[N

: 2 between displacement fields in nearest neighboring principal layers. In
fbf the present case two layers form a principal layer. The column vector W,

i
g
.Eﬁ ‘ denotes displacement fields in the principal layer n,
“ »
' Wol1) = Wy s 00 1= 1,2, (AD).
-
?(j{ In terms of these column vectors W, the eigenvalue problem for the bulk
i;iz layers can be written as,
\ v":'r - - - + = =
R (z DOO)Nn 001wn+1 001 An-l o,b,n=1, 2, ..., (A2)
!4; and the corresponding equation for the surface layers is given by,
'- -‘

0y -
T - . .
K ! Here z = w“ and 000’ D01 and DSoo are (2x2) dynamical submatrices formed
,{3; from the full dynamical matrix O(L,L') which can be obtained directly from
W

hOhy
i L denotes a bulk layer, and Osoo(i,j) = p(i,j). For instance, 001 is given
®q

o0 by,

e .

e, 10
o

% O =% (A4)
ﬁ;?, 11/ .
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Equation (A2) shows explicitly that there are only interactions

A
oh between displacement fields in nearest neighboring principal layers. Since
‘fﬁ 001'1 exists Hn+1 can be directly expressed in terms of the two preceding
»tﬂ column vectors Wp and Wy.) by a simple rearrangement of Eq. (A2) as,

-3 = -1 -1 + =

" Nn+1 DOI (Z - Doo)wn - Dol 001 wn_l, n-= 2,3, s o o (AS)
:ﬁ This equation shows that it is possible to construct a matrix T(z) which
¢

{& relates the displacement fields in two principal layers n+2 and n+l to the
¢ corresponding fields in the two preceding principal layers n and n-1,

b W W

2 (N"*2)= T‘Z’(w" , (86)
‘:_: n+l n-1
1:: The matrix T(z) is the transfer matrix and is given by the product of the
g following two matrices,

T3 Dy~ 2z-Dnn) Dy =!0a*\ [ Dy M(2-Dyn) Dy =Dt
¢ 01 00 01 "o01 01 00 01 01
‘23 T(z) = ) 0 1 0 (A7)

By iterating Eq. (A6), a displacement field in any principal layer can be

determined from their values on the surface layers as,

20 s
'.."

',‘l:' H =T (Z) w . (As)
‘ ) n+l 1
':; Equation (A3) for W, and W, gives only 2 equations for 4 displacement
Ej fields and are not sufficient to determine W, and W;. Further restrictions
-\-':
o are found by introducing the appropriate boundary conditions. That can be
‘;1 done by anaylzing the eigenvalues and eigenvectors of the dynamical
2.}
j; matrix.
o
ii; For the bulk layers the solution to Eq. (A2) is given by translational
| i symmetry as plane waves,
W
!
b
4
K.
P
R
B~
' ‘S;
) “u"
“
2 , , .
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,§' i2nng
P W= ¢ : (A9)
) ai(2n-1)wg
‘ﬂ@ where the reduced wavevector ¢ satisfies the bulk dispersion relation
.".
Eti w? = wp?(sin?(ng/2)+sin?(nz))/2 as given by Eq. (3) in Section 3. In terms
,
?ﬁ' of the variable x=el™% this dispersion relation is equivalent to a
;ﬁi polynomial of degree 4 in A and has accordingly 4 roots ik, k=1,2,3,4.
1"
gf: The eigenvectors Vk(2z) of T(z) can now be directly formed from these
i
A
‘ plane wave solutions,
\J A 3
W . : kK
’- 2
.:g Vk(z) = | M (A10)
L A
N k
»
RN 1
;:i{ and the associated eigenvalue for Vi(z) is given by Ag* and
& T(z)vg = xk“vk. The eigenvalues are distinct away from the critical
ti: points, dw/dz = 0, and the corresponding eigenvectors span the
L
“EZ 4-dimensional space of displacement fields of two adjacent principal
:Jj layers. Thus W, and W, can then be simultaneously expanded in terms of
'(' Vk,
Ly :
Y
-5 ", %
Ll = ¢V, . (A11)
':‘- wl k=1 k'k
%:}: This equation and Eq. (A8) give directly that the displacement field for
‘“21 any principal layer can be expressed as,
by Yane2| 4 g4,
P y =k§ M Vi n=0,1,2..., (A12)
5;5 2n+1{ k=1
o4
\
1
e
L |
o |
e
j |
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L2

or in terms of the displacement field w for a layer L,

4 . ‘in;kL

5 W = kzl ¢.e . (A13)
[} .

'Sz where Ek = cke'iz"ck. This form of solution in Eq. (A13) justifies the
;ES ansatz made in Eqs. (9) and (14) in Section 3. The solution corresponding
l;- to scattered wave can be found by imposing the outgoing boundary conditions
is as discussed in Section 3. This restricts the solutions to depend on two
33. parameters. These two parameters can then be determined from the two

. equations for the surface layers.
is§ A more convenient way to evaluate the vibrational density of states
:EE g(w,{n }) than using the scattered wave solutions appearing in Eq. (A13)
5;; is to determine first the resolvent matrix (a Green function) U(L,L';z)
_Eg associated with the dynamical matrix D(L,L'). This resolvent is defined
' by,

5 E,,[ZG(L,L") - D(L,L")JulL”,L';z) = &(L,L'), (A14)
§?” and the vibrational density of states is given by,

»: (o, n 1) = 2 n LU0 UL L a0t 2 (AL5) -
;é; The transfer matrix approach can now be applied by considering the

“fﬁ resolvent (2x2) submatrices Un pn'(z) with respect to the principal layers
ﬁ; and they are defined as,
?i; Un’n.(i.j;z) = U(2n-L+i,2n'+L-j;2), i,j=1,2. (A16)
tSi To obtain the vibrational density of states for the surface layers it is

3 sufficient to evaluate Uy 1(z). The resolvent matrix element Un,l(Z)

;‘ satisfies the same equations as W, Eq. (A2), except at the surface layers
o where the equations have an inhomogenous term,
K

-

;ﬁi
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-
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;:‘ s (2 - DegglUy 1 (2) - Dy U, 4(2) =1 (A17)
o Similar to the construction of Wp, Up 1(2) can be constructed from
5%7: Up,1(2) and Uy 1(2) by iterating the transfer matrix,
i Uone2,1(2) Uz,1(2)
¥ L
N X =T"(2) . (A18)
' t Some care is needed to get the correct physical Riemann sheet of the
ey resolvent as a function of z. On this sheet Up 1(z) has to be decaying
Wvh]

' with n when imparting a small positive imaginary part ic to w, z = (w +
:ﬁ% ie)?. Such a decay is evidently achieved by expanding the two column
’?ég vectors of Up 1(z) and Up 1(z) simultaneously in terms of those
r eigenvectors with '*k, < 1. This point and the fact that for complex z
1;;2 the eigenvectors are divided evenly into two classes l*kl‘l and
2O

Fij lxkl > 1, respectively, were shown in detail for the general case in the
R, original work by Lee and Joannopoulos.13 Let k=1,2 label the two
3§j eigenvectors with |Ak| < 1 and introduce the two associated (2x2)

"

,_,::_f_ matrices,
(= i3y = e

’ Wyli,d) VJ(1)
,:ﬁ, (A19)
:ii The expansion of the two submatrices of the resolvent in these two

o
NG eigenvectors now becomes,
()

u Uz, 1(20) [ ¥A

Ao U, L (2)f7 \w A (A20)
L. 1,1 L

"

j;‘ where the coefficients in the expansion forms a (2x2) matrix A. These two
,Qﬂj resolvents are now specified by 4 parameters. The 4 surface layer

22; equations in Eq. (A17) for Uj 1(z) and U,1(2) will now completely

Lo , o

¢ determine these parameters. This can be done by first eliminating the
o
b
R
P

LR « g a .\'. - » L] 1~ -\w I.'t\wx*\-“:‘-‘*\-.-ﬂ\h.\'\‘. 1._'-_'. * e,
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matrix A from Eq. (A20).

L
&40 Y

o
b
-

. -1
UZ,I(Z) = HUHL Ul,l(Z)' (A21)

EF Ll
P g O SO P

x5

Furthermore, by inserting this expression for Up j(z) into Eg. (A17) a

simple linear matrix equation is obtained for Ul,l(l) which can be solved

- R

by a matrix inversion,

o]
-

ol "-;w""

-t
»
o

- -1yl
UI,I(Z) = (z - DSoo - DOlewL ) i (A22)

Thus for every frequency w the vibrational density of states can be

= M )

evaluated from Eqs. (A15) and (A22) by diagonalization of a (4x4) complex

oo
>

L3

matrix and by inversion of two (2x2) matrices. Uy 1(z) will have simple

L P,

poles at those frequencies corresponding to localized vibrational modes at

&t

g <
i

é the surface. Similiarly, the resonances appear as poles in the complex
v . frequency plane but not on the physical Riemann sheet of U 1(z).

N ' However, the other Riemann sheets of Uy 1(z) should be possible to

construct from other choices for the eigenvectors in Eq. {Al9).
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Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:
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Figure Captions

Electron energy loss spectra of the clean (110) surfaces of Cu and
Ni. The spactra were recorded in the specular direction at 300

K. The sharp peaks observed at 20 and 24 meV, for Cu and Ni
respectively, correspond to surface vibrational resonances.
Longitudinal bulk phonon dispersion relations in the [110], [111]
and [100] directions of Cu and Ni. The data from inelastic
neutron scattering are compared with results from a nearest
neighbor central force constant model. The interlayer distance is
d.

Structure of fcc crystals in the [110] and [100] directions. (a)
Top view of atoms of the (110) surface together with the
crystallographic directions. The (110) surface Brillouin zone is
depicted in (b). The coordination of atoms in the bulk layers
normal to the surface are shown for (c) the [110] and (d) the
[100] directions.

The density of states g{w) for longitudinal phonons projected on
bulk and surface layers for Ni. The results for g(w) in the
[110], [111] and [100] crystal directions have been calculated
using the same force constant model as in Fig. 2.

Calculated electron energy loss function I,(w)/Iy for Ni(110) at
300 K. o is the maximum intensity of the elastic peak in the
energy loss spectrum. Only the two outermost surface layers are
assumed to be dipole active and the total effective charge e* ot
has been adjusted to 0.039e (e is the free electron charge) in
order to reproduce the measured loss in Fig. 1. The instrumental

resolution has been introduced by a Gaussian broadening of 4 meV.
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Sensitivity of g(w) to different models for the surface force
constants and the effective charge fields. Upper panel shows the
results for different values of the surface interlayer force
constant ag relative to the bulk interlayer force constant a.

The relative motion of the two outermost layers has been used in
obtaining the dipole active projection for g(w). Lower panel

shows the results for different choices of the effective charges

(e], €5, e}, ey) of the four outermost surface layers, e:ot =1

when ag = a.

Dispersion of bulk phonons in the [110] direction of Ni and the

corresponding surface phonon density of states g(w) at

£ = kxa//fi = 0.6. The left panel shows the two branches, an

upper "U" and a lower "L" branch, of the dispersion in the [110]

direction (solid 1ines) arising from an avoided croésing between

phonons polarized in the x- and z- directions, respectively. The
dashed lines show the dispersion when the interaction between
these two polarizations is turned off. The right panel shows the
phonon density of states g(w) projected on the z-motion (solid
line) and the x-motion (dashed line) of the outermost surface
layer.

Dispersion of the resonance along the TX-direction. The
dispersion of the resonance arising from the pseudo band gap
(squares) makes an avoided crossing with the dispersion of the
resonance (circles) derived from the S,(X) surface phonon. The
solid lines give the maximum hw| max, fwy max and minimum
hol mins Pwy min energies of the lower and the upper

boundaries of bulk subbands, respectively. The dashed lines show
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f%ﬁ; AW (€,5=1) andfAwy(£,z=1) for phonons with a reduced
b
N wavevector £ = kya//2Zr where a is the lattice constant. The
_iiﬁ notation of the surface resonances S, and S, are taken from Ref.
ot
oo 14.
Lo
::, Fig. 9: Structure of a bcc(111l) surface. The two different views of the
iﬁf atoms (solid circles) are defined by the indicated
-
=:$* crystallographic directions. The atoms in (a) are enumerated
according to which layer they belong with number one
?.\J“‘
M corresponding to the surface layer. The solid bars in the side
L
.jgé view (b) connects nearest and next nearest neighboring atoms.
_Q The dashed circles represent atoms in an adjacent layer of atoms.
\"'
‘:j; Fig. 10: Longitudinal bulk phonon dispersion in tihe [111] direction of
;ij- ‘ Fe. The data from inelastic neutron scattering'? (squares) are
. compared with the result from a tensor force constant model
:EI extending to second nearest neighboring atoms. The lattice
:; constant is a.
LJ Fig. 11: The projected density of states g(w) for longitudinal phonons on
fﬁj a bulk layer (upper panel) and the outermost surface layer (lower
s
;:: panel) of Fe(1lll).
o
P Fig. 12: Electron energy loss spectrum of the Fe(1ll) surface. The
;ﬁa spectrum was recorded in the specular direction at 300 K. The
i?:: sharp peak observed at 21 meV corresponds to a surface
'!E vibrational resonance. The small, broad structure at - 60 meV
e
-] is due to < 1% contamination of oxygen. The inset shows the
S
)ij dipole projected density of states calculated for a projection on
")
[N A
4. the relative motion of the outer two surface layers and
5}; convoluted with a 4.5 meV Gaussian bioadening due to instrumental
[\ ,.
k-7 resolution.
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